A Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods

In this paper, we derive a priori error estimates for a class of interior penalty discontinuous Galerkin (DG) methods using immersed finite element (IFE) functions for a classic second-order elliptic interface problem. The error estimation shows that these methods can converge optimally in a mesh-dependent energy norm. The combination of IFEs and DG formulation in these methods allows local mes...

متن کامل

Discontinuous Galerkin Finite Element Methods for Interface Problems: A Priori and A Posteriori Error Estimations

Discontinuous Galerkin (DG) finite element methods were studied by many researchers for second-order elliptic partial differential equations, and a priori error estimates were established when the solution of the underlying problem is piecewise H3/2+ smooth with > 0. However, elliptic interface problems with intersecting interfaces do not possess such a smoothness. In this paper, we establish a...

متن کامل

Discontinuous Finite Element Methods for Interface Problems: Robust A Priori and A Posteriori Error Estimates

Abstract. For elliptic interface problems in two and three dimensions, this paper studies a priori and residual-based a posteriori error estimations for the Crouzeix–Raviart nonconforming and the discontinuous Galerkin finite element approximations. It is shown that both the a priori and the a posteriori error estimates are robust with respect to the diffusion coefficient, i.e., constants in th...

متن کامل

An a priori error analysis for the coupling of local discontinuous Galerkin and boundary element methods

In this paper we analyze the coupling of local discontinuous Galerkin (LDG) and boundary element methods as applied to linear exterior boundary value problems in the plane. As a model problem we consider a Poisson equation in an annular polygonal domain coupled with a Laplace equation in the surrounding unbounded exterior region. The technique resembles the usual coupling of finite elements and...

متن کامل

Parallel Iterative Discontinuous Galerkin Finite-element Methods

We compare an iterative asynchronous parallel algorithm for the solution of partial diierential equations, with a synchronous algorithm , in terms of termination detection schemes and performance. Both algorithms are based on discontinuous Galerkin nite-element methods, in which the local elements provide a natural decomposition of the problem into computationally-independent sets. We demonstra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Computing

سال: 2015

ISSN: 0885-7474,1573-7691

DOI: 10.1007/s10915-015-9989-3